An iterative initialization scheme for mesoscale studies
نویسندگان
چکیده
منابع مشابه
Convergence of an Iterative Scheme for Multifunctions on Fuzzy Metric Spaces
Recently, Reich and Zaslavski have studied a new inexact iterative scheme for fixed points of contractive and nonexpansive multifunctions. In 2011, Aleomraninejad, et. al. generalized some of their results to Suzuki-type multifunctions. The study of iterative schemes for various classes of contractive and nonexpansive mappings is a central topic in fixed point theory. The importance of Banach ...
متن کاملAn Iterative Multiresolution Scheme for SFM
Abstract. Several factorization techniques have been proposed for tackling the Structure from Motion problem. Most of them provide a good solution, while the amount of missing and noisy data is within an acceptable ratio. Focussing on this problem, we propose to use an incremenal multiresolution scheme, with classical factorization techniques. Information recovered following a coarse-to-fine st...
متن کاملAn Iterative Scheme for Generalized Equilibrium, Variational Inequality and Fixed Point Problems Based on the Extragradient Method
The problem ofgeneralized equilibrium problem is very general in the different subjects .Optimization problems, variational inequalities, Nash equilibrium problem and minimax problems are as special cases of generalized equilibrium problem. The purpose of this paper is to investigate the problem of approximating a common element of the set of generalized equilibrium problem, variational inequal...
متن کاملInitialization of Iterative Refinement Clustering Algorithms
Iterative refinement clustering algorithms (e.g. K-Means, EM) converge to one of numerous local minima. It is known that they are especially sensitive to initial conditions. We present a procedure for computing a refined starting condition from a given initial one that is based on an efficient technique for estimating the modes of a distribution. The refined initial starting condition leads to ...
متن کاملCONVERGENCE THEOREMS FOR ASYMPTOTICALLY PSEUDOCONTRACTIVE MAPPINGS IN THE INTERMEDIATE SENSE FOR THE MODIFIED NOOR ITERATIVE SCHEME
We study the convergence of the modified Noor iterative scheme for the class of asymptotically pseudocontractive mappings in the intermediate sense which is not necessarily Lipschitzian. Our results improves, extends and unifies the results of Schu [23] and Qin {it et al.} [25].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tellus
سال: 1975
ISSN: 0040-2826,2153-3490
DOI: 10.3402/tellusa.v27i2.9899